Copied to
clipboard

G = C2×C42.C22order 128 = 27

Direct product of C2 and C42.C22

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C42.C22, C42.64D4, C42.140C23, C22.38C4≀C2, C42.81(C2×C4), C4.4D4.7C4, (C22×D4).7C4, C8⋊C450C22, (C22×Q8).6C4, (C22×C4).663D4, (C2×C42).184C22, C23.219(C22⋊C4), C4.4D4.110C22, C22.27(C4.D4), C2.27(C2×C4≀C2), (C2×C8⋊C4)⋊13C2, (C2×D4).17(C2×C4), (C2×Q8).17(C2×C4), C2.9(C2×C4.D4), (C2×C4).1168(C2×D4), (C2×C4.4D4).2C2, (C22×C4).206(C2×C4), (C2×C4).134(C22×C4), (C2×C4).175(C22⋊C4), C22.198(C2×C22⋊C4), SmallGroup(128,254)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C42.C22
C1C2C22C2×C4C42C2×C42C2×C4.4D4 — C2×C42.C22
C1C22C2×C4 — C2×C42.C22
C1C23C2×C42 — C2×C42.C22
C1C22C22C42 — C2×C42.C22

Generators and relations for C2×C42.C22
 G = < a,b,c,d,e | a2=b4=c4=e2=1, d2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc2, ebe=b-1, cd=dc, ece=b2c-1, ede=b-1c2d >

Subgroups: 324 in 142 conjugacy classes, 52 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C8⋊C4, C8⋊C4, C2×C42, C2×C22⋊C4, C4.4D4, C4.4D4, C22×C8, C22×D4, C22×Q8, C42.C22, C2×C8⋊C4, C2×C4.4D4, C2×C42.C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.D4, C4≀C2, C2×C22⋊C4, C42.C22, C2×C4.D4, C2×C4≀C2, C2×C42.C22

Smallest permutation representation of C2×C42.C22
On 64 points
Generators in S64
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)(25 61)(26 62)(27 63)(28 64)(29 57)(30 58)(31 59)(32 60)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 54 63 23)(2 51 64 20)(3 56 57 17)(4 53 58 22)(5 50 59 19)(6 55 60 24)(7 52 61 21)(8 49 62 18)(9 41 40 25)(10 46 33 30)(11 43 34 27)(12 48 35 32)(13 45 36 29)(14 42 37 26)(15 47 38 31)(16 44 39 28)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 31)(2 35)(3 45)(4 10)(5 27)(6 39)(7 41)(8 14)(9 52)(11 19)(12 64)(13 56)(15 23)(16 60)(17 36)(18 42)(20 32)(21 40)(22 46)(24 28)(25 61)(26 49)(29 57)(30 53)(33 58)(34 50)(37 62)(38 54)(43 59)(44 55)(47 63)(48 51)

G:=sub<Sym(64)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,54,63,23)(2,51,64,20)(3,56,57,17)(4,53,58,22)(5,50,59,19)(6,55,60,24)(7,52,61,21)(8,49,62,18)(9,41,40,25)(10,46,33,30)(11,43,34,27)(12,48,35,32)(13,45,36,29)(14,42,37,26)(15,47,38,31)(16,44,39,28), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31)(2,35)(3,45)(4,10)(5,27)(6,39)(7,41)(8,14)(9,52)(11,19)(12,64)(13,56)(15,23)(16,60)(17,36)(18,42)(20,32)(21,40)(22,46)(24,28)(25,61)(26,49)(29,57)(30,53)(33,58)(34,50)(37,62)(38,54)(43,59)(44,55)(47,63)(48,51)>;

G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20)(25,61)(26,62)(27,63)(28,64)(29,57)(30,58)(31,59)(32,60)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,54,63,23)(2,51,64,20)(3,56,57,17)(4,53,58,22)(5,50,59,19)(6,55,60,24)(7,52,61,21)(8,49,62,18)(9,41,40,25)(10,46,33,30)(11,43,34,27)(12,48,35,32)(13,45,36,29)(14,42,37,26)(15,47,38,31)(16,44,39,28), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,31)(2,35)(3,45)(4,10)(5,27)(6,39)(7,41)(8,14)(9,52)(11,19)(12,64)(13,56)(15,23)(16,60)(17,36)(18,42)(20,32)(21,40)(22,46)(24,28)(25,61)(26,49)(29,57)(30,53)(33,58)(34,50)(37,62)(38,54)(43,59)(44,55)(47,63)(48,51) );

G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20),(25,61),(26,62),(27,63),(28,64),(29,57),(30,58),(31,59),(32,60),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,54,63,23),(2,51,64,20),(3,56,57,17),(4,53,58,22),(5,50,59,19),(6,55,60,24),(7,52,61,21),(8,49,62,18),(9,41,40,25),(10,46,33,30),(11,43,34,27),(12,48,35,32),(13,45,36,29),(14,42,37,26),(15,47,38,31),(16,44,39,28)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,31),(2,35),(3,45),(4,10),(5,27),(6,39),(7,41),(8,14),(9,52),(11,19),(12,64),(13,56),(15,23),(16,60),(17,36),(18,42),(20,32),(21,40),(22,46),(24,28),(25,61),(26,49),(29,57),(30,53),(33,58),(34,50),(37,62),(38,54),(43,59),(44,55),(47,63),(48,51)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I4J4K4L8A···8P
order12···2224···444448···8
size11···1882···244884···4

38 irreducible representations

dim11111112224
type+++++++
imageC1C2C2C2C4C4C4D4D4C4≀C2C4.D4
kernelC2×C42.C22C42.C22C2×C8⋊C4C2×C4.4D4C4.4D4C22×D4C22×Q8C42C22×C4C22C22
# reps142142222162

Matrix representation of C2×C42.C22 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
10000
001300
013000
000115
000116
,
160000
00100
01000
00040
00004
,
130000
061000
010600
000012
00060
,
10000
016000
00100
000160
000161

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,0,13,0,0,0,13,0,0,0,0,0,0,1,1,0,0,0,15,16],[16,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4],[13,0,0,0,0,0,6,10,0,0,0,10,6,0,0,0,0,0,0,6,0,0,0,12,0],[1,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,16,16,0,0,0,0,1] >;

C2×C42.C22 in GAP, Magma, Sage, TeX

C_2\times C_4^2.C_2^2
% in TeX

G:=Group("C2xC4^2.C2^2");
// GroupNames label

G:=SmallGroup(128,254);
// by ID

G=gap.SmallGroup(128,254);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1123,1018,248,1971,102]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=e^2=1,d^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^2,e*b*e=b^-1,c*d=d*c,e*c*e=b^2*c^-1,e*d*e=b^-1*c^2*d>;
// generators/relations

׿
×
𝔽